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Abstract. Many polynomial and discrete optimization problems can be reduced to multiextremal
quadratic type models of nonlinear programming. For solving these problems one may use Lag-
rangian bounds in combination with branch and bound techniques. The Lagrangian bounds may be
improved for some important examples by adding in a model the so-called superfluous quadratic
constraints which modify Lagrangian bounds. Problems of finding Lagrangian bounds as a rule
can be reduced to minimization of nonsmooth convex functions and may be successively solved
by modern methods of nondifferentiable optimization. This approach is illustrated by examples of
solving polynomial-type problems and some discrete optimization problems on graphs.
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1. Lagrangian bounds, nondifferentiable optimization and nonsmooth
matrix functions

Consider the problem of nonlinear programming in a general form: to find

f ∗ = inf
x∈X⊆En

f0(x), subject to fi(x) = 0, i = 1, . . . , m, (1)

where En is the n-dimensional Euclidean space, X is a closed set in this space,
f0, f1, . . . , fm are continuous functions, defined on En. We set f ∗ = +∞, if the
problem (1) has no feasible solution. Let us form the usual Lagrange function:

L(x, u) = f0(x) +
m∑
i=1

uifi(x),

where u = (u1, . . . , um) is a vector of Lagrange multipliers.
For each u ∈ Rm we obtain the local problem: to find

ψ(u) = inf
x∈X

L(x, u). (2)

Function ψ(u) is a concave function with respect to u as a result of minimization
of the family of linear in u functions Lx(u) = L(x, u).

Let ψ(u) has a nonempty domain of full dimension m and x(u) is a solution of
local problem (2). It is easy to verify that ψ(u) � f ∗ for an arbitrary u ∈ domψ .
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The supergradient of ψ in the point u can be calculated by formula:

gψ(u) = {fi(x(u))}mi=1 ∈ Rm. (3)

If the set of vectors generated by (3) is not single, then u is the point of nondiffer-
entiability of function ψ .

We try to find the best lower bound for f ∗ in this class of Lagrangian estimates
and obtain the coordinating problem: to find

ψ∗ = sup
u∈Rm

ψ(u).

Note that the problem of finding the best Lagrangian bounds ψ∗ is one of the main
sources of generating the nonsmooth optimization models.

Many combinatorial optimization problems can be formulated as Boolean LP
problems, and the corresponding dual bounds may be obtained by LP relaxations
of such models. But in some cases the nonlinear quadratic-type formulation of a
combinatorial problem is more convenient and may give more exact dual bounds.
In these cases, as a rule, the problem of obtaining dual bounds may be reduced
to the convex programming problems with nonsmooth matrix function (or to the
equivalent problems of semidefinite programming).

Now there exist many methods of nondifferentiable optimization, for example,
simple subgradient method, ε-subgradient methods, methods with space transform-
ation. One of the most practically effective modern methods is the algorithm with
space dilation in the direction of difference of two successive subgradients (the
so-called r-algorithm).

This method was proposed by N.Z. Shor in 1970 [32] for acceleration of conver-
gence of subgradient methods. A family of r-algorithms contains different realiza-
tions of subgradient-type methods with space dilations in the direction of difference
of two successive subgradients. Below we give a general scheme of r-algorithm.

Denote by Rα(ξ) the linear operator of space dilation in the direction ξ , ‖ξ‖ =
1, with coefficient α, α � 0, specifying for each x ∈ En the vector y ∈ En due to
the formula:

y = Rα(ξ)x = x + (α − 1)(x, ξ)ξ.

Let f (x) be a minimized convex function defined on En, x0 ∈ En be a given point.
Denote by gf (x) a subgradient of function f in the point x. The general scheme of
r-algorithm is following:

The first step

x1 = x0 − h0
gf (x0)

‖gf (x0)‖ ,

where h0 is the step multiplier such, that (gf (x0), gf (x1)) � 0. Fix gf (x0), gf (x1),
B0 = In (n × n identity matrix). After k steps we have x1, x2, . . . , xk and fix
xk, gf (xk−1) and n× n matrix Bk.
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(k + 1)-st step.
Calculate:
(a) gf (xk);
(b) rk = gf (xk)− gf (xk−1);

(c) ξk = Bk−1rk
‖Bk−1rk−1‖ ;

(d) Bk = Bk−1Rβk(ξk), 0 < βk < 1;
(e) xk+1 = xk − hkBk

BT
k gf (xk)

‖BT
k gf (xk)‖

.

If the stopping criteria is not fulfilled, fix xk+1, gf (xk), Bk and go to the next step.
Comments. After k steps of r-algorithm let Ak−1 be the resulting matrix of

space transformation: y = Ak−1x, or x = Bk−1y, where Bk−1 = A−1
k−1, and

ϕk(y) = f (Bk−1y). Since gϕk (y) = BT
k−1gf (x), rk is the difference of two sub-

gradients of function ϕk taken in the points yk = Ak−1xk and ỹk−1 = Ak−1xk−1. So
ξk is the normalized direction of the difference of two successive subgradients of
transformed function ϕk(y). In this direction we make a current dilation of trans-
formed space and obtain resulting matrix Ak = Rαk (ξk)Ak−1. The inverse matrix
Bk = Bk−1Rβk(ξk), βk = 1/αk. Consider ϕk+1(y) = f (Bky), and use subgradient
step for function ϕk+1(y) from ỹk = Bkxk:

yk+1 = ỹk − hk
BT
k gf (xk)

‖BT
k gf (xk)‖

.

In original space the point xk+1 = Bkyk+1 corresponds to the point xk+1, and we
obtain

xk+1 = xk − hkBk

BT
k gf (xk)

‖BT
k gf (xk)‖

.

Thus we calculate xk+1, gf (xk), Bk, and are ready to make the next iteration.
The family of r-algorithms has two sequences of parameters: {βk}∞

k=1 and
{hk}∞

k=1. Naturally, we must think about rational choice of these sequences to obtain
‘good’ convergence to the optimal point of f (x).

For minimization of nonsmooth convex functions defined on En we recommend
to use the following specifications of r-algorithm:

The space dilation coefficients αk equal to α, where α ∈ [2, 4]. To determine
a step multiplier hk we use adaptive technique of step length regulation (see [35])
determined by parameters: h(0)0 (initial step-length), integer number m > 1, and
coefficients q1 < 1 and q2 > 1 for decreasing (increasing) of step-multiplier. After
k iterations of r-algorithm we obtain step constant h0

k. On (k + 1)-st iteration we
choose the direction of descent due to r-algorithm and move in this direction with
a step multiplier h0

k until the condition of stopping the search along the direction is
fulfilled or the number of steps would be equal to m. In the last case we continue
descent along the same direction with a new step constant h1

k = q2h
0
k. If after

m steps the condition of interrupting of search direction is not fulfilled, we set
h2
k = q2h

1
k and so on.
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We suppose that lim‖x‖→+∞ f (x) = +∞, so after finite number of steps the
stopping condition for directional search will be fulfilled.

The details of such way of regulating step-multiplier one may find in Section 3
of [33].

The results of testing of r-algorithms show that if the errors of rounding are not
essential, the objective function values as a rule may be majored by a geometrical
progression of the form Cq

k
n , where k is the current number of steps and q = 1

2 .
So, as a rule the convergence of r-algorithm is approximately 2n times faster than
of well known ellipsoid methods.

The most typical examples of nonsmooth functions are maximal and minimal
eigenvalues of symmetric matrices and sums of k largest eigenvalues (for example,
see [23]).

Let %n be the class of real n × n symmetric matrices. Any matrix A ∈ %n has
n real eigenvalues (with account of their multiplicity) and a pair of eigenvectors
associated with two different eigenvalues are orthogonal. Let A ∈ %n, A =
{aij }ni,j=1,

λ1(A) � λ2(A) � . . . � λn(A)

be the eigenvalues of A, ordered nonincreasingly.
A symmetric real matrix is called positive definite (semidefinite) if λn(A) > 0

(λn(A) � 0). We shall write A � 0 (A � 0), if A ∈ %n and A is positive definite
(semidefinite).

The Rayleigh–Ritz formula is known for the maximal eigenvalue λ1(A):

λ1(A) = max
‖y‖=1

(Ay, y) = max
‖y‖=1

n∑
i,j=1

aij yiyj , (4)

where y = (y1, . . . , yn) ∈ En. λ1(A) is a convex function defined on %n since
formula (4) gives representation of this function as a maximum of a family of
linear functions in entries {aij }ni,j=1.

Denote by Y ∗(A) a set of normalized vectors y, which give maximum in (4), i.e.,
λ1(A) = (Ay∗, y∗) for all y∗ ∈ Y ∗(A). From (4), one may obtain the subgradient
set Gλ1(A) of function λ1(·) in the point A:

Gλ1(A) = conv
{∪y∈Y ∗(A)yy

T
}
.

The calculation of subgradient gλ1(A) ∈ Gλ1(A) may be reduced to finding an
arbitrary y∗(A) ∈ Y ∗(A) and applying the next formula:

gλ1(A) = {y∗(A)[y∗(A)]T } .
(Note that yyT , y ∈ En, is a symmetric matrix of rank 1 with entries {yiyj }ni,j=1). If

λ1(A) has multiplicity 1, then gλ1(A) is unique and function λ1(A) is differentiable
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at the point A. When multiplicity of λ1(A) is more than 1, the function λ1(A) is
nondifferentiable at A.

Now we introduce a very interesting class of convex matrix functions defined
on symmetric matrices A ∈ %n, namely, the sums of the k largest eigenvalues:

Sn,k(A) =
k∑

r=1

λr(A), 1 � k � n.

Famous mathematician Fan Ky gave in 1949 variational description of Sn,k(A)
that is a far going generalization of Rayleigh–Ritz formula (4). Let Mk

n be the class
of rectangular n × k matrices Y , the columns yi, i = 1, . . . , k, k � n form an
orthonormal‘ system of n-dimensional vectors, i.e. Y T Y = Ik (Ik is k × k identity
matrix).

THEOREM 1. (Fan Ky [17]).

Sn,k(A) = max
Y∈Mk

n

{tr(AYY T )}, ∀A ∈ %n. (5)

The maximum in formula (5) is reached at orthonormal system of eigenvectors
y∗

1 , . . . , y
∗
k corresponding to eigenvalues λ1(A), . . . , λk(A). Indeed,

Ay∗
i = λi(A)y

∗
i , i = 1, . . . , k,

tr(AYY T ) = (A, YY T ) =
k∑

i=1

(λi(A)y
∗
i , y

∗
i ) =

=
k∑

i=1

λi(A) = Sn,k(A).

When k = 1, formula (5) is reduced to the expression (4).
Consider the class of n× n matrices

Ck
n = conv{YY T : Y ∈ Mk

n}.
THEOREM 2. Ck

n coincides with the class of all positive semidefinite matrices C
with λ1(C) � 1 and with trace, equal to k [17].

Due to this theorem, we obtain a new variational formula for Sn,k(A):

Sn,k(A) = max
C∈Ck

n

(A,C), (6)

where (A,C) =∑n
i,j=1 aij cij (A = {aij }ni,j=1, C = {cij }ni,j=1).

Formulas (5) and (6) give us the representation of the function Sn,k(A) as a
pointwise maximum function on infinite family of linear (in matrix variable A ∈
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%n) functions. So, Sn,k(A) is a convex function for any n, k � n. The structure of
subgradient set GSn,k (A) is determined by (6):

GSn,k (A) = {C∗ ∈ Ck
n : Sn,k(A) = (A,C∗)}

For almost all A, C∗ is unique and gives us the gradient gSn,k (A) of Sn,k in the point
A.

The most strict way for obtaining a subgradient gSn,k (A) is the following:
(i) solve the eigenvalue problem for matrix A and find the eigenvalues λ1(A),

. . . , λk(A) and the corresponding orthonormal system of eigenvectors
Yj(A) = {yji }ni=1, j = 1, . . . , k;

(ii) construct the n × k matrix Y = {yji }j=1,... ,k
i=1,... ,n ;

(iii) set gSn,k (A) = YY T .
In general, when not all k largest eigenvalues of A have multiplicity 1, the subgradi-
ent gSn,k is not unique, because the system of eigenvectors {Yi(A)}ki=1 is determined
nonuniquely in this case. But if one is interested in calculating any subgradient
from GSn,k (A) one can use the procedure described above for arbitrary orthonormal
system Y (A) of eigenvectors associated with the k largest eigenvalues λ1(A) �
λ2(A) � . . . � λk(A).

LetA be a diagonal matrix and a11 � a22 � . . . � akk � . . . � ann, 1 � k � n.
Consider two cases:
(I) akk > a(k+1)(k+1). In this case in formula:

Sn,k(A) = max
C∈Ck

n

(A,C) = (A,C∗).

C∗ is determined uniquely (C∗ is a diagonal matrix with cii = 1 for i � k

and cii = 0 for i > k). The subgradient of the function Sn,k in the point
A, gSn,k (A) is equal to C∗, and the function Sn,k is differentiable at A;

(II) akk = a(k+1)(k+1). In this case the subgradient set GSn,k (A) contains more than
one extremal point. For example, if aii = akk for all i, k− s � i � k+p (s �
0, p � 1), then an arbitrary diagonal matrix A with properties:
(1) aii = 1 for i < k − s;
(2) aii = 0 for i > k + p;
(3) the set of values {aii}, k − s � i � k + p contains exactly s ones and p

zeroes;
is an extreme point of GSn,k (A). So, in the case (II) the function Sn,k is nondif-
ferentiable at A.

In general, if for a symmetric matrix A, λk(A) > λk+1(A) then Sn,k is differen-
tiable at A; otherwise (i.e., λk(A) = λk+1(A)) the function Sn,k is nondifferentiable
at A.

In many applications we meet with a weighted sum of k largest eigenvalues:

Sn,k(A,w) =
k∑

i=1

wiλi(A), where w = (w1, . . . , wk) � 0.
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LEMMA 1. If w1 � w2 � . . . � wk, then Sn,k(A,w) is a convex function defined
on %n.

The weighted sum of the largest eigenvalues Sn,k(A,w) can be represented also
by the variational formula similar to formula (5):

Sn,k(A,w) = max
Z∈Mk

n(w)
{tr(AZZT )},

where Mk
n(w) is the class of rectangular n× k matrices Z, the columns Zi forming

an orthogonal system of n-dimensional vectors, and ‖Zi‖2 = wi, i = 1, . . . , k,
w1 � w2 � . . . � wk.

Due to expression (5) of Theorem 1 the subgradient set for the function Sn,k(·)
at point X is given by the following expression:

GSn,k (X) = conv

(
k∑

i=1

yiy
T
i

)
,

where yi, i = 1, . . . , k, form an arbitrary orthonormal system of vectors, associ-
ated with eigenvalues λ1(X), . . . , λk(X). If multiplicity of all eigenvalues λ1(X),

. . . , λk(X) is equal to one, then the matrix
∑k

i=1 yiy
T
i is determined uniquely and

coincides with gradient Sn,k(X) at point X.
Functions λm(X), 1 < m < n are quasi-differentiable functions (in the sense

of Demjanov and Rubinov [11]). They may be considered as a difference of two
convex functions

λm(X) = Sn,m−1(X)− Sn,m(X).

If w = {w1, . . . , wn} � 0 and wk � wk+1 for k = 1, . . . , n − 1, then sub-
gradient set of convex function Swn (X) =∑n

i=1 wiλi(X) can be represented by the
following expression:

GSwn
(X) = conv

{
n∑
i=1

wiyiy
T
i

}
,

where {yi}ni=1 is any orthonormal system of eigenvectors of matrix X (each yi is
associated with λi(X)). If all eigenvectors yi(X) with wi > 0 have multiplicity 1,
then Swn is differentiable at X.

2. Quadratic-type minimization problems, Lagrangian lower bounds and
superfluous constraints

Consider now the problems of finding Lagragian lower bounds for quadratic-type
optimization models:

Find Q∗ = inf
x∈En

Q0(x) subject to Qi(x) = 0, i = 1, . . . , m, (7)



8 NAUM Z. SHOR AND PETRO I. STETSYUK

where Qν(x), ν = 0, . . . , m are quadratic or linear functions, determined on n-
dimensional Euclidean space En. If the problem (7) has no feasible solution, we
set Q∗ = +∞. Using usual Lagrange function L(x, u), u = {u1, . . . , um}, one
can obtain Lagrangian lower bounds for such problems by finding ψ∗ = supψ(u),
where ψ(u) = inf

x∈En
L(x, u). If domψ is nonempty, then ψ(u) is a proper concave

function. In opposite case we obtain a trivial bound ψ∗ = −∞.
Consider the problem of finding dual (Lagrangian) estimates for quadratic-type

problems of the form (7) in more detail. Let quadratic functions Qν(x), ν =
0, . . . , m, have the following description:

Qν(x) = (Kνx, x) + (cν, x) + dν,

where Kν are symmetric quadratic n × n matrices, cν are n-dimensional vectors,
dν are numbers. So, (Kνx, x) is the quadratic part of Qν(x) and (cν, x) is the linear
part of Qν(x), ν = 0, . . . , m.

Usual Lagrange function L(x, u) can be represented as

L(x, u) = Q0(x) +
m∑
i=1

uiQi(x) = (K(u)x, x) + (c(u), x) + d(u),

where

K(u) = K0 +
m∑
i=1

uiKi;

c(u) = c0 +
m∑
i=1

uici;

d(u) = d0 +
m∑
i=1

uidi;

(here u = {u1, . . . , um} is m-dimensional vector of Lagrange multipliers).
Consider ψ(u) = inf

x
L(x, u). If K(u) is a positive definite matrix then ψ(u) =

L(x(u), u), where x(u) is a solution of linear system of equations

2K(u)x + c(u) = 0,

i.e.

x = −1

2

(
K(u)

)−1

c(u).

If the minimal eigenvalue of K(u) λn

(
K(u)

)
< 0, then ψ(u) = −∞.
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In the case λn

(
K(u)

)
= 0 matrix K(u) is positive semidefinite but singu-

lar. Let s1, . . . , sn be the orthonormal basis in En, corresponding to eigenvectors
ordered in decreasing order of their eigenvalues (with taking in account their mul-
tiplicity). Then c(u) can be represented in the form:

c(u) =
n−r∑
i=1

αi(u)si +
r∑

i=n−r
αi(u)s;

where r is the multiplicity of the minimal eigenvalue equal to zero. If all αk(u) = 0
for n − r + 1 � k � n, then x(u) exists, i.e. u ∈ domψ . Otherwise ψ(u) = −∞.

Let domψ be non-empty. Then ψ is a proper concave function as a result of
minimization with respect to x of functions

ψu(x) = Q0(x) +
m∑
i=1

uiQi(x),

which are linear by u for all x.
For each u ∈ domψ ψ(u) � Q∗ (Q∗ is an optimal value of initial problem (7)).
Let u ∈ Em and K(u) � 0. Then Q(u) is an interior point of domψ . Denote by

6+ the set

{u ∈ Em / K(u) � 0}.
Boundary 6 of 6+ consists of u for which K(u) has the minimal eigenvalue

equal to zero. It is easy to prove that all u ∈ 6 are limit points of the set 6+. So if
6+ is nonempty then domψ is closed in Em.

Let ψ∗ = sup
u∈Em

ψ(u) and there exists a point u∗ such that ψ∗ = ψ(u∗). If

u∗ ∈ 6+ then gψ(u
∗) = Qi(x

∗) = 0, i = 1, . . . , m. In this case ψ∗ = Q∗.
Otherwise, when x∗ ∈ 6, it may be a positive defect of duality:

7 = Q∗ − ψ∗ > 0.

For many interesting problems we may improve the dual bounds by using the
so-called functionally superfluous constraints in the form of quadratic equations
(inequalities) which do not change the optimal value of initial polynomial problem
but lead to modification of Lagrange function of corresponding quadratic problem.
This modification may give substantial increasing of new Lagrangian bound for a
modified quadratic type problem in comparison with ψ∗ for the old one.

Note that if we add to initial problem (7) new quadratic superfluous constraints
Qm+1(x) = 0, . . . ,Qm+r (x) = 0, r � 1 and form a longer vector of Lagrange

multipliers U =
{
{u}, um+1, . . . , um+r

}
then for the problem:

Q∗ = inf
x∈En

Q0(x) subject to Qi(x) = 0, i = 1, . . . , m,m+ 1, . . . , m+ r
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the corresponding Lagrange function will be

L1(x,U) = Q0(x) +
m+r∑
i=1

uiQi(x) = L(x, u) +
m+r∑

i=m+1

uiQi(x).

So

L(x, u) = L1

(
x, ({u}, 0, . . . , 0)

)
, ψ1(U) = inf

x
L1(x,U)

� infL(x, u) = ψ(u),

and

ψ∗
1 = supψ1(U) � ψ∗.

We shall demonstrate the possible improving of dual bounds by introducing super-
fluous constraints on a simple example.

Example. Let P6(x1) be a sixth-degree polynomial of one variable x1:

p6(x1) = x6
1 + a5x

5
1 + a4x

4
1 + a3x

3
1 + a2x

2
1 + a1x1 + a0.

The problem is to find value p∗ of (global) minimum of p6(x1). One may transform
this problem in a quadratic-type problem by introducing new variables x2 = x2

1 ;
x3 = x1x2.

Consider a vector of variables x = {x1, x2, x3} and obtain the equivalent prob-
lem:
to minimize

Q0(x) = x2
3 + a5x2x3 + a4x3x1 + a3x3 + a2x2 + a1x1 + a0 (8)

subject to constraints:

Q1(x) = x2
1 − x2 = 0, (9)

Q2(x) = x1x2 − x3 = 0. (10)

The Lagrange function L(x, u) of this problem has the following form (u =
{u1, u2} is a vector of Lagrange multipliers):

L(x, u) = Q0(x) + u1Q1(x) + u2Q2(x).

Consider the matrix K(u) which defines the quadratic part of L(x, u).

K(u) =

 u1

u2
2

a4
2

u2
2 0 a5

2
a4
2

a5
2 1


 .
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One may see that if a5 �= 0, for all u = {u1, u2}, K(u) cannot be positive
semidefinite, and we obtain a trivial lower bound ψ∗ = −∞. So, it seems an
attempt to use dual quadratic bounds for our example failed. But if we add to our
model a superfluous constraint

Q3(x) = x2
2 − x1x3 = 0 (11)

and modify respectively the Lagrange function, we radically change the situation.
New Lagrange function L1 has 3 Lagrange multipliers

u(1) = {u1, u2, u3}
and

L1(x, u
(1)) = L(x, u) + u3(x

2
2 − x1x3)

and K(u) changes for

K1(u
(1)) =


 u1

u2
2

a4−u3
2

u2
2 u3

a5
2

a4−u3
2

a5
2 1


 .

It is easy to show that if we choose u3 >
a2

5
4 and u1 large enough to make

det
(
K1(u

(1))
)
> 0, the matrix K1(u

(1)) becomes positive definite, so the function
ψ1(u

(1)) = inf
x
L1(x, u

(1)) has nonempty domain, and we obtain nontrivial Lag-

rangian bound ψ∗
1 . Moreover, we show later that this bound is exact, i.e. ψ∗

1 =
p∗

6.

3. Quadratic-type problems for finding global minimum of polynomials

Consider a more general problem.
Let P2m(x1) be a polynomial of one variable x1 of even degree 2m with the

eldest coefficient 1:

P2m(x1) = x2m
1 +

2m∑
i=1

a2m−i x2m−i
1 .

Introduce variables xr = xr1, r = 1, . . . , m, and represent all monomials xk1 ,
k = 1, . . . , 2m, as a product of no more than two monomials xr1 , 0 < r � m.
We call these representations as feasible. For some k such representations may be
nonunique. So we use the so-called ‘standard’ representation:

xk1 =
{
xk for k � m,

xk−mxm for m � k � 2m.
(12)
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By using (12) we obtain the ‘standard’ representation of polynomial P2m(x1) as a
quadratic function of variables xr , r = 1, . . . , m:

P2m(x1) = K0(x1, . . . , xm) = x2
m +

m−1∑
k=1

a2m−kxm−kxm +
2m∑
k=m

a2m−kx2m−k.

(13)

Consider all possible nonstandard representations of monomials xk1 , 1 < k � 2m.
One may obtain the full system of quadratic-type equalities in the form:

πks = xk − xsxk−s = 0, 1 � s � k

2
, 2 � k � m. (14)

πkt = xk−mxm − xtxk−t = 0, t � k − t < m, 2m − 2 > k > m. (15)

For example, if m = 3, we obtain the constraints x2 − x2
1 = 0; x3 = x1x2; x1x3 −

x2
2 = 0.

Thus, we have reduced the problem of finding a global minimum value P ∗
2m of

polynomial P2m(x1) to quadratic-type problem: minimize K0(x1, . . . , xm) subject
to constraints of the form (14), (15). It is easy to determine that the number of
basic equations necessary to convert the initial problem of finding P ∗

2m in equivalent
quadratic-type problem is (m− 1):

xk = x1xk−1; 2 � k � m.

The other constraints from (14), (15) are superfluous. The number of all constraints
from (14), (15) equals to m(m−1)

2 .
Consider the Lagrange function for the quadratic-type problem (13), (14), (15).

Denote by uks the Lagrange multipliers corresponding to equations πks = 0 in (14)
and by ukt to the equations πkt = 0, from (15). Let us form the usual Lagrange
function L2m(xm, um) for the quadratic-type problem (13), (14) and (15), where
xm denotes the vector (x1, . . . , xm), um denotes the vector of Lagrange multipliers
corresponding to constraints from (14), (15). Let’s formulate the main Theorem.

THEOREM 3. The best Lagrangian bound ψ∗
m = sup

um

ψ(um), where ψ(um) =
inf
xm

Lm(xm, um) is equal to P2m
∗, i.e. this bound is exact.

To prove this fact we use the following Lemma.

LEMMA 2. The nonnegative polynomial

P 2m(x1) = P2m(x1)− P ∗
2m

can be represented as a sum of squares of real polynomials of degrees not exceeding
m.
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Proof. All complex roots of equation P 2m(x1) = 0, if they exist, form pairs of
the form aα + ibα and aα − ibα , here aα and bα are real numbers. The real roots
βr , r = 1, . . . , k, must have the even multiplicity 2δr otherwise P 2m(x1) cannot
be positive.

Let

f1(x1) =
∏
α

[x1 − (aα + ibα)] = R(x1) + iQ(x1),

f2(x1) =
∏
α

[x1 + (aα − ibα)] = R(x1) − iQ(x1),

where R and Q are real polynomials.
Then

P 2m(x1) = f1(x1)f2(x1)

[∏
r

(x1 − βr)
2δr

]
=

=
[
R2(x1)+Q2(x1)

][∏
r

(x1 − βr)
δr

]2

.

So the nonnegative polynomial P 2m(x1) can be represented as a sum of squares of
real polynomials of degree not exceeding m. The proof is over.

Instead of monomials xi = xi1, i = 1, . . . , m, consider another system of basic
polynomial functions which corresponds to moving of origin of x1 by constant h:

zi = (x1 + h)i; i = 1, . . . , m; z0 = 1.

We want to expose xr1 , i = 1, . . . , 2m, as quadratic (or linear) functions of z1, . . . ,

zm. Let us use induction by r. For r = 2

x2
1 = (x1 + h)2 − 2h(x1 + h)+ h2 = z2 − 2hz1;

Denote by Qk(z1, . . . , zm) the representations of xk1 (k = 1, . . . , 2m − 1) as a
quadratic function of variables x1, . . . , xm. Then

Qk+1(x1, . . . , xm) = x1Qk(z1, . . . , zm) = z1Qk(z1, . . . , zm)

− hQk(z1, . . . , zm).

One may generate the full system of quadratic equalities for monomials zri , 2 �
r � 2m, similar to (14), (15):

zk − zrzk−r = 0 for k � m, r � k

2
; (16)

zk−mzm − zrzk−r = 0 for m < k � 2m; r � k

2
; k − r �= m. (17)
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When we use the recurrent formula (16) some monomials after multiplication by
z1 may possess nonstandard form and we must add the equalities of the form
(16) or (17) with corresponding multipliers to obtain the expressions for x(k)1 , k =
1, . . . , 2m, as a quadratic function of variables z1, . . . , zm in standard form.

If we substitute these expressions for xk1 in polynomial P2m(x1) given in stand-
ard form we obtain quadratic function K

(h)
0 (z1, . . . , zm) representing the polyno-

mial P2m(x1 + h).
Thus K

(h)
0 (z1, . . . , zm) coincides with Lagrange function L(z1, . . . , zm;

Uh(P2m)), where Uh(P2m) is the vector of Lagrange multipliers for equalities (16)
and (17), dependent on moving h and coefficients of initial polynomial P2m(x1) to
be minimized. From previous discussion one may obtain the following Lemma.

LEMMA 3. For an arbitrary fixed moving h and a polynomial P2m(x1) there exists
a vector of Lagrange multipliers Uh(P2m) such that

L1
(
x1, . . . , xm; U − Uh(P2m)

) = L (x1, . . . , xm; U)) ,
whereL1 is Lagrange function for quadratic representation of polynomial P2m(x1+
h).

COROLLARY 1. The best Lagrangian quadratic bounds ψ∗(h) for polynomial
P2m(x1 + h) is equal to ψ∗.

We say that a polynomial P2m(xi) possesses E-property if the best Lagrangian
quadratic bound of it ψ∗ = min

x1
P2m(xi) = P ∗

2m. It is obvious.

LEMMA 4. If the polynomial P2m(x1) of degree 2m with the eldest coefficient 1
possesses E-property then for arbitrary h ∈ R the polynomial P2m(x1 + h) also
possesses E-property.

Let the point x∗
1 ∈ En be a point of global minimum of polynomial P2m(x1) and

P2m(x
∗
1 ) = P ∗

2m. Consider the polynomial P2m(x1) = P2m(x1 − x∗) − P ∗
2m. The

nonnegative polynomial P 2m(x1) has its global minimum value 0 in the point x1 =
0. By Lemma 2 polynomial P 2m(x1) can be decomposed into a sum of squares of
real polynomials of degree not exceeding m.

P 2m(x1) =
N∑
i=1

[
P (i)
m

]2
. (18)

Since P 2m(0) = 0, each of polynomials P (i)
m (x1) has no constant part.

Let L
∗
(x1, . . . , xm; U) be the Lagrange function for quadratic representation

of P 2m(x1). Set U = 0. Then L
∗
(x1, . . . , xm; 0) = P 2m(x1) and can be de-

composed into a sum of squares (see (18)). Each of polynomials P (i)
m can be rep-

resented as a linear form in variables x1, . . . , xm, so min
x

L
∗
(x1, . . . , xm; 0) =

L
∗
(0, 0, . . . , 0; 0) = 0, the best Lagrangian quadratic bound is exact.
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From Lemma 4 we obtain that the Lagrangian quadratic bound for initial prob-
lem: to find a global minimum for polynomial P2m(x1) is also exact. The proof of
Theorem 3 is over.

For polynomials of several variables the situation is more complicated. Further
we shall give a review of main results in the theory of dual quadratic bounds (with
using of superfluous constraints) for polynomials of several variables.

Let Rn be n-dimensional linear space of real vectors x = {x1, . . . , xn}, P(x) =
P(x1, . . . , xn) be a polynomial real function defined on Rn. Consider the problem
of finding

f ∗ = inf
z∈Rn

P (x1, . . . , xn).

We will be interested in nontrivial case where f ∗ > −∞, i.e. P(x) is bounded
from below. Such polynomials will be called BB-polynomials. It is clear that if
P(x) belongs to BB-class, then for any i, 1 � i � n, the highest degrees Si of
variables xi must be even. Note that the problem of the BB-property is in general
similar by its computational complexity to the problem of finding f ∗.

Let Si = 2li , i = 1, . . . , n, and P(x) be recorded in standard form as a sum of
monomials with some real nonzero coefficients. For compact record of monomials
we use a vector of degree α = (α1, . . . , αn) with nonnegative integer entries and
symbols R[α] of the corresponding monomials.

R[α] = x
α1
1 , . . . , xαnn ; αi � Si, i = 1, . . . , n.

So

P(x) =
∑
α

cαR[α] in new variables, 0 � αi � 2li , i = 1, . . . , n. (19)

Let all monomials of polynomial P(x) = P(x1, . . . , xn) have maximal degree
on variable xi equal to 2li (i = 1, . . . , n). Consider ‘feasible’ monomials R[α] =∏n

i=1 x
αi
i , where αi � li , i = 1, . . . , n.

For each monomial R[α] choose the ‘standard’ representation of monomial
R[α] as a product of two feasible monomials:

R[α] = R[α1(α)] · R[α − α1(α)],

α1(α), (α − α1(α)) � 0.

Moreover, an integer vector

α1(α) � α − α1(α) � 0,

or

α1(α) � α

2
.
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Consider for each monomial R[α], αi � 2li , i = 1, . . . , n the full set of quadratic-
type equalities in feasible R-variables of the form:

R[α1(α)] · R[α − α1(α)] − R[β] · R[α − β] = 0, (20)

where β runs all possible values of integer feasible vectors, not equal to α1(α),
such that

β � α − β � 0, so β � α

2
.

We obtain the ‘full’ set of constraints if we record the equations of the type (20)
for all α = (α1, . . . , αn), αi � 2li , i = 1, . . . , n.

Using the full family of equalities of the type (20) one can get all possible
representations of polynomial P(x1, . . . , xn) as quadratic function in feasible R-
variables:

P(x1, . . . , xn) =L(R, u) =
∑
α

cαR[α1(α)] · R[α − α1(α)] +

+
∑
α,β

uαβ(R[α1(α)] · R[α − α1(α)] − R[β] · R[α − β]),

(21)

where uαβ are arbitrary multipliers in the left part of equalities (20) with corres-
ponding {α, β}, cα are coefficients in usual representation of P(x) in (19).

On the other hand, we can consider L(R, u) as a Lagrange function of quadratic-
type problem in feasible variables R(α):

to minimize

P(x1, . . . , xn) =
∑
α

cα

n∏
i=1

x
αi
i =

∑
α

cα(R[α1(α)] · R[α − α1(α)])

subject to the full set of constraints of the form (20), u = {uαβ} are Lagrange
multipliers.

Our aim is to find conditions when

ψ∗ = sup
u

[
inf
R
L(R, u)

]
= P ∗ = min

x
P (x).

These conditions are formulated in

Main Theorem. Let polynomial function in n variables P(x) reaches the global
minimum at point x∗ and P(x∗) = P ∗.

Then a dual quadratic bound ψ∗ = P ∗ if and only if the nonnegative polynomial
P(x) = P(x) − P ∗ can be represented as a sum of squares of polynomials, which
have only feasible monomials.
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Proof of the Main Theorem. We say that a polynomial P(x), min
x∈En

P (x) = P(x∗) =
P ∗, possesses E-property if Lagrangian quadratic bound is exact i.e. ψ∗ = P ∗. To
prove the Main Theorem we use the next

Lemma. If polynomial P(x), x ∈ En possesses E-property then for arbitrary a ∈
En the polynomial Pa(x) = P(x + a) also possesses this property (see [33]).

Due to the previous Lemma one can suppose without loss of generality that optimal
point is x∗ = 0.

Let BB-polynomial P(x) − P ∗ is represented as a sum of squares of real
polynomials Ri(x), i = 1, . . . , k, i.e.

P(x) =
k∑

i=1

[Ri(x)]2.

Replace each monomial Mαi contained in polynomial Ri(x) by the correspond-
ing feasible variable R[α(i)]. The output of [Ri(x)]2 for each i can be represented
as a sum of monomials of the form C(i)

s C
(t)
t R[α(it)]R[α(is)]. After summing the

similar terms, one obtains for each possible R[α] the corresponding coefficient

Cα =
∑
i

∑
(s,t)

C(i)
s C

(i)
t ,

where pairs (s, t) are such that α(i,s) + α(i,t) = α.
Choose Lagrange multipliers in expression for L(R, u) (21) equal to zero. Then

the value of corresponding Lagrange function L(x, u) coincides with the objective
function. Since the objective function minus P ∗ is a sum of squares, the corres-
ponding representation of a quadratic part in R[α] variables is positive semidefin-
ite, so u = 0 belongs to dom ψ . x∗(0) is a solution of linear system of equations in
variables R[α]:

Qi[R] = 0, i = 1, . . . , m.

The optimal value of the function P(x) equals to zero, i.e. P(0). So, due to the
Lemma, P(x) can be represented as a sum of squares of real polynomials. P(x)
possesses E-property.

Continue the proof of the Main Theorem. Let polynomial P(x) possesses E-
property and min

x∈En
P (x) = P(x∗) = P ∗. This polynomial P(x) = P(x) − P ∗

takes its minimum at the same point x∗ and P(x∗) = 0. Since P(x) possesses E-
property there exists u∗ such that for the corresponding quadratic-type problems in
variables R[α] Lagrange function L(R, u), when u = u∗ is positive-semidefinite
in R-variables, so it can be represented as a sum of squares of linear functions in
feasible R-variables

L(R, u∗) =
k∑

i=1

{lu∗
i [R]}2.
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Instead of each term of such defined linear functions in R[α] variables one can
substitute corresponding possible feasible monomials in x variables. So we obtain
the representation P(x) in the form

P(x) =
k∑

i=1



[

n∑
i=1

cijMij (x)

]2

 ,

where {cij }ki=1 are vectors of coefficients of linear functions lu
∗

i , i = 1, . . . , k,
Mij (x) are corresponding monomials. So P(x) can be represented as a sum of
squares of real polynomials.

The Main Theorem is proved.
A great mathematician D. Hilbert [21] considered the problem of representa-

tion of nonnegative polynomial forms as a sum of squares polynomials more than
hundred years ago. He proved that if dimension n = 1 or 2, arbitrary nonnegative
forms (homogeneous polynomials) can be represented as a sum of squares. If n = 3
and the number of variables � 3, also the corresponding nonnegative forms can be
represented as a sum of squares. But if n = 3 and degree 2m � 4 there exist
nonnegative polynomial forms which cannot be represented as a sum of squares.
Our approach gives a possibility not only to determine whether a given nonnegative
polynomial can be decomposed into a sum of squares, but to find such decom-
position if it exists using the described above algorithm of finding Langrangian
quadratic bounds with use of full set of superfluous constraints.

4. Quadratic-type models and upper bounds for the problems of finding the
maximum weighted independent set in graphs

Let an undirected graph G(V,E) be given: V = {1, . . . , n} is the set of vertices,
E is the set of edges; (i, j) ∈ E is the edge with end points i and j belonging to V ,
(i, j) and (j, i) are equivalent symbols. The subset I ⊆ V is called independent
(stable) if there is no pair i and j such that i, j ∈ I and (i, j) ∈ E, i �= j .

A subset K ⊆ V is called a clique if for all pairs i, j ∈ K, (i, j) ∈ E, i �= j .
Denote by AG = {aij }ni,j=1 the adjacency matrix of G(V,E):

aij = 1, if (i, j) ∈ E; aij = 0, if (i, j) �∈ E.

The complement graph to G(V,E) is G(V,E) with the same vertex set and

E = {(i, j), i �= j/(i, j) ∈ E, iff (i, j) �∈ E}.
The graph G(V,E) may be vertex weighted if for every i ∈ V the weight

wi � 0 is given.
Let w = {wi}i∈V . For a subset S ⊆ V we define W(S) (weight of S) as

W(S) =
∑
i∈S

wi.



LAGRANGIAN BOUNDS IN MULTIEXTREMAL POLYNOMIAL AND ..................... 19

We call

G(S) = G(S,E ∩ S × S)

a subgraph of G(V,E) induced by S. The maximum weight clique problem is to
find a clique of maximum weight.

The maximum (weight) independent (stable) set problem is to find an independ-
ent set of maximum cardinality (of maximum weight). The size of a maximum
independent set is the stability number of G, denoted by α(G). The maximum
weight independent set is denoted by αw(G). It is easy to see that S is a clique of
G if and only if S is an independent set of the complement graph G. So, any result
obtained for one of the mentioned problems can be reformulated for another prob-
lem. Both of these problems are NP -complete for the class of arbitrary graphs. But
for some specific classes of graphs polynomial-time algorithms were constructed.

The weighted maximum stable set problem in graphs can be formulated as the
following 0–1 problem: to find

αw(G) = max(w, x), x = {x1, . . . , xn}, (22)

xi + xj � 1 for all (i, j) ∈ E, (23)

xk ∈ {0, 1} for all k ∈ V. (24)

We introduce the stable set polytope

STAB(G) := conv{xS ∈ RV |S ⊆ V is a stable set }
defined as the convex hull of the incidence vectors of all stable sets of vertices
of G. αw(G) is equal to the maximum value of linear function (w, x) on convex
polytope STAB(G). Of course, it is very useful to represent the STAB(G) by a sys-
tem of linear inequalities. Unfortunately, in general case, it is a very hard problem.
Therefore we consider some particular cases.

The linear relaxation of the problem (22)–(24) is to find:

α1(G, V ) = max(w, x), (25)

xi + xj � 1,∀(i, j) ∈ E, (26)

0 � xk � 1, k = 1, . . . , n. (27)

Theorem [20]. The inequalities (26), (27) give full description of STAB(G) if and
only if G is bipartite. Hence, for bipartite graphs the problem (22)–(24) can be
solved in polynomial time, as LP problem, if weights are rational.

The minimal graphs for which inequalities (26), (27) are not sufficient to de-
scribe STAB(G) are the odd circuits. In fact, if G(V,E) is an odd circuit then
|V | = 2m + 1, and the point xi = 1

2 , i ∈ V satisfies the inequalities (26), (27) but
does not belong to STAB(G). So we can propose a new class of linear inequalities
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valid for STAB(G), the so-called odd circuit constraints,

∑
i∈V (C)

xi � |V (C)| − 1

2
for each odd circuit C, (28)

where V (C) is the set of vertices that lie in the circuit C.
Let us call the graph t-perfect if (26), (27) and (28) are enough to describe

STAB(G).
In general case we do not know whether the problem of checking the t-perfectness

is in NP or in P. Despite this fact a maximum weight stable set in a t-perfect graph
can be found in polynomial time by using a slight modification of the ellipsoid
method (see [20], p. 276). This problem is reduced to the LP-problem (25)–(27),
(28) with possibly exponentially many odd circuits constraints (28). But for obtain-
ing cutting plane in the ellipsoid method it is enough to have one constraint of type
(28) that is not satisfied for a given x. The search of such constraint is equivalent to
finding the shortest weight odd circuit. For the last problem there exist polynomial
time algorithms ([20], p.236).

A partition of V into stable sets (cliques, respectively) is called a coloring
(clique covering, respectively) of G. The coloring number (respectively, clique
covering number) is the smallest number of stable sets in a coloring (respectively,
cliques in a clique covering) of G, and is denoted by χ(G) (respectively, χ(G)). It
is clear that

χ(G) = χ(G).

Each stable set in G has no more than one representative in each clique, hence, we
have the inequality:

α(G) � χ(G).

Similarly we obtain

ω(G) � χ(G),

where ω(G) is a clique number of graph G. Berge called a graph G perfect if the
equality

ω(G′) = χ(G′)

holds for every induced subgraph G′ of G. The first Berge’s conjecture about per-
fect graphs was the following [5, 6]: The complement of a perfect graph is also
perfect. This was proved by well known Hungarian mathematician Lovász in 1972
[25]. In 1962 Berge also proposed the Strong Perfect Graph Conjecture. The
graph is perfect if and only if it or its complement, does not contain an odd circuit
of length at least five as an induced subgraph. This conjecture is still unsolved.
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In [24] L. Lóvasz proposed and proved some interesting upper bounds for α(G),
which are exact for the class of perfect graphs. Similar results one may find in
[26, 31]. Further these results were generalized for a weighted problem of finding
αw(G) (see [20], Chapter 9.3).

Below we shall formulate two general extremal matrix problems studied while
finding upper bounds νw(G) for the weighted independent set problem (see [20],
§9.3).

I. Let G = {V,E} be a graph, |V | = n, w = {wi}ni=1 be a vector of vertex
weights. Consider F , the class of symmetric matrices n × n S(y) = {sij (y)}ni,j=1
dependent on parameter vector y = {y1, . . . , yn}, which have following properties
for arbitrary y ∈ Rn:

(a) sij (y) = 0, if (i, j) ∈ E;
(b) the matrices S(y) ∈ F are positive semidefinite;

(c)
n∑
i=1

sii(y) = 1.

The problem of finding Lagrangian bound νw(G) was reduced to the following
extremal problem: to find

max
{y:S(y)∈F }

n∑
i,j=1

√
wiwj si(y) sj (y).

II. The other upper bounds equal to the first one has the form:

ϑw(G) = min
A∈%n

λmax[A +W ], (29)

where %n is the class of symmetric n×n matrices, A = {aij }, aii = 0 for all i ∈ V ,
aij = 0 for all i, j nonadjacent in G, W = {√wi · wj, i, j ∈ V }, λmax(·) denotes
the maximal eigenvalue.

Since λmax(X) is a nondifferentiable convex function of entries X, the problem
(29) is a typical problem of nondifferentiable optimization and may be solved
particularly by r-algorithm. In the case when all weights are 1, the problem (29)
is reduced to minimization of maximal eigenvalue on some set of matrices with
variable entries. The upper bounds (I) and (II) for αw(G) were obtained by specific
technique of coding theory, namely, by orthonormal representation of graphs (see
[24, 20]).

These investigations were stimulated by works of C. Shannon, founder of clas-
sical information theory (see [30]). In this paper C. Shannon give the notion of
information capacity of graph, which is connected with the problem of speed of
transferring long messages, in which some symbols can be mixed. He proposed a
linear upper bound for information capacity of graph:

µ(G) = max
n∑
i=1

xi, (30)
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i∈S

xi � 1, for an arbitrary clique S ∈ G, (31)

0 � xk � 1, k = 1, . . . , n. (32)

(Here G(V,E) is a graph, V is a set of symbols and E is a set of edges, corres-
ponding to mixed symbols.) For perfect graph such estimate is exact and coincides
with Lóvasz νw(G) bounds.

We can obtain the same bounds using quadratic-type formulation of the problem
of finding maximal weighted stable set in graph G and calculating corresponding
Lagrangian bounds.

Namely, let the graph G = (V ,E), |V | = n, w = {wi}ni=1 (the vector of
weights) be given. Consider the quadratic-type problem:

to find

αw(G) = max
n∑
i=1

wixi (33)

subject to constraints:

x2
k − xk = 0,∀k = 1, . . . , n (Boolean property) (34)

xixj = 0,∀(i, j) ∈ E. (35)

Let u = ({uk}nk=1, {uij }i,j ∈ E) be a vector of Lagrange multipliers. Consider the
optimal Lagrangian bound

ρw(G) = inf
u

sup
x

L(x, u).

In our case the function ψ(u) = supL(x, u) has nonempty domain. As proved in
[33], ρw(G) has the same value, as Lóvasz’s bounds.

These bounds are exact for arbitrary weights if G is a perfect graph. For non-
perfect graphs one can find such weights, that corresponding bounds are not exact.

Thus, using a natural quadratic-type formulation of the problem of finding max-
imal weight stable number in a graph and applying to this problem standard tech-
nique of finding Lagrangian bounds we get the same results as obtained by using
‘specific’ approach of orthonormal representation of graphs.

Consider dual quadratic Lagrangian bounds νw(G) for αw(G). We want to im-
prove such bounds. For this aim one may use superfluous quadratic inequalities in
the problem formulation, for example

xi xj � 0 for all (some) nonadjacent pairs (i, j) (36)

or

xk(xi + xj ) � xk, for any k and (i, j) ∈ E, (i, j, k) ∈ V. (37)
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The corresponding modification of Lagrange functions may lead sometimes to
more precise dual bound for αw(G) without essential complication of calculations.
So, if we add to the constraints (34), (35) the constraints of the form (36), (37)
we then take into attention not only clique constraints (31) but also the odd circuit
constraints (28).

Even if we use only one trivial family of superfluous inequalities (36) we can
considerably improve the dual upper bounds for αw(G) in some cases. The corres-
ponding Lagrange function L1(x, λ) can be constructed as follows:

L1(x, λ) =
n∑
i=1

wixi +
∑

(i,j)∈E
λij xixj +

n∑
k=1

λk(x
2
k − xk)

−
∑

(i,j)∈E
λ
(1)
ij xixj ,

where λ = {{λk}nk=1, {λij }i,j∈E, {λ(1)ij }i,j∈E .
Let

ϕ1(λ) = sup
x

L1(x, λ), ϕ∗
1 (G) = inf

λ∈6+ ϕ1(λ)

(here 6+ is the domain of function ϕ1 in λ).
There are some graphs G for which the upper bound ϕ∗

1 for α(G) is much better
than ν(G). For example, let vertices of graph G6 = (V ,E) correspond to the
integer numbers from 0 to 63, written in binary codes of length 6, and two vertices
v1, v2 are joined by edge if Hamming distance d(v1, v2) is no more than 3. It
is easy to show that α(G6) = 4 (see [26]) (for instance the maximum stable set
is: {v1 = (000000), v2 = (111100), v3 = (110011), v4 = (001111)}. It was
calculated, that ν(G6) = 16

3 , but ϕ∗
1 (G6) = 4. It is a bright example of the fact that

adding of superfluous constraints to nonconvex problem may considerably improve
the dual (Lagrange) bound.

The number of constraints (36) is large, but we may use the fact, that in optimal
solution the different dual variables, corresponding to pairs (i, j), which have the
same Hamming distance, are equal. Due to this fact in our example the number of
dual variables for the constraints (36) can be reduced to 6 variables. The results of
numerical experiments one may find in [33, p. 259, 36].

5. Using of the Fan Ky theorem for obtaining dual bounds in some problems
of graph theory

The Lovasz’s estimate νw(G) may be obtained also in the following way. Let
G = (V ,E) be a simple undirected graph without loops, V = {1, . . . , n}. De-
note by x(S) = {xi(S)}ni=1 the indicator vector of the subset S ⊆ V . Let W =
{√wiwj }i,j∈V be a n × n- matrix, u = {uij }i,j∈E;

AG(u) = {uij , (i, j) ∈ E; 0, otherwise
}
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be a subclass of symmetric n × n matrices. For arbitrary S ⊆ V consider an n-
dimensional vector

w(S) =



√
wi√∑
j∈S wj

, i ∈ S; 0, otherwise


 .

Note that ‖w(S)‖ = 1, and for arbitrary u and a stable set S

(W + AG(u)w(S),w(S)) = (Ww(S),w(S)) =

∑
i,j∈S

wiwj

∑
k∈S

wk

=
∑
i∈S

wi. (38)

Let νG(u) be the maximal eigenvalue of M(u) = W + AG(u). From (38) one can
obtain:

νw(u) = λ1[W + AG(u)] = max
{z:‖z‖=1}

(M(u)z, z)

� (M(u)w(S),w(S)) =
∑
i∈S

wi

for arbitrary u and a stable set S. So, νw(u) is an upper bound for the maximum
weight of stable sets for every u.

Thus, νw(G) = minu λ1(W + AG(u)) � αw(G) is a well known estimate of
Lovasz.

In a similar way one can obtain the upper bound for α(k)(G), where α(k)(G) is
the size of the largest induced k-partite subgraph of G = (V ,E), i.e., the maximum
number of nodes, that can be covered by k subsets of V so that no edge has both
ends in any subset.

Let S1, S2, . . . , Sk be k pairwise nonintersecting stable subsets of V . Introduce
the family of n-dimensional vectors {Yr}kr=1, Yr = (y(1)r , . . . , y(n)r ),

y(i)r =



1√|Si| , i ∈ Sr, r = 1, . . . , k;
0 , otherwise

Vectors Yr, r = 1, . . . , k, form an orthonormal system. Denote by Y (k) the n× k

matrix with columns Yr, r = 1, . . . , k.
Let AG(u), u = {uij }(i,j)∈E, be the parametric family of symmetric n × n

matrices with entries aij (u)

aij =
{
uij , if (i, j) ∈ E,

1 , otherwise.

It is easy to verify that for arbitrary u, tr
(
A(u)Y (k)[Y (k)](t)) = ∑k

r=1 |Sr |. Due to
Fan Ky Theorem (Theorem 1), maxY∈Mn,k

tr[A(u)YY (t)], where Mn,k is the class
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of matrices n × k with orthonormal system of k columns, is equal to the sum of k
largest eigenvalues of symmetric matrix A(u).

So,

Sn,k(A(u)) =
k∑

r=1

λr[A(u)] �
∑
r=1

|Sr |

for arbitrary u and any k-partite induced subgraph of G with stable sets S1, . . . , Sk.
Thus,

ν(k)(G) = min
u

Sn,k(A(u)) � α(k)(G). (39)

Calculation of ν(k)(G) is the problem of nonsmooth convex optimization and can
be solved by subgradient-type methods, particularly, by r-algorithm. Procedure of
finding of a subgradient is described in section 1 of this article.

The upper bound (39) for α(k)(G) was first derived by Narasimhan and Manber
in [27]. When k = 1, one obtains the Lovasz’s estimate ν(G) for the stable number
α(G).

Calculation of ν(k)(G) is reduced to the minimization of |E|-dimensional con-
vex nonsmooth function of matrix parameters u, which enter into matrix affinely.

If α(k)(G) = |V | = n, it means that graph G = (V ,E) has a true vertex
colouring by k colours. So if ν(k)(G) < n the graph G cannot be coloured by
k colours. Thus, we can use the upper bound ν(k)(G) for studying some of the
colouring problems.

The problem of minimizing weighted sums of the k largest eigenvalues of a
parametric family of symmetric matrices has many combinatorial applications. The
best known of them is the graph partitioning problem. The problem is to divide n
nodes of a given graph G(V,E) into k disjoint subsets with given cardinalities
m1 � . . . � mk in a way to minimize the total number of edges connecting
different subsets. The problem is NP-hard and therefore we have no hope to get
a computationally ‘good’ algorithm for its precise solution in general case. But
Donath and Hoffman proposed in [13, 14] an effective lower bound for this problem
that gives us a possibility to obtain good enough approximate solutions or test the
accuracy of the solution that can be obtained by other relatively simple heuristic
methods.

Let Skn(x) = ∑k
i=1 λi(A(x)) be a sum of k largest eigenvalues of matrixA(x).We

know that Skn(x) is a convex function in x. In the case of graph partitioning problem
the variables x are contained only in diagonal elements of A(x). The lower bound
for the partitioning problem given in [13, 14] is:

ρ∗(A,m) = −1

2
s∗, (40)
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where s∗ is the solution of the following problem: minimize

Skn(x,m) =
k∑

i=1

miλi(A0 + D(x)) (41)

subject to the constraint trD(x) = 0,

where the nondiagonal elements a0
ij of the symmetric matrix A0 are equal to one,

if the i-th and j -th nodes are connected, and zero-otherwise; the diagonal elements
are defined by

a0
ii = −

n∑
j=1;j �=i

(a0
ij ), i = 1, . . . , n,

D(x) is a diagonal matrix with elements

dii = xi, , i = 1, . . . , n,
n∑
i=1

xi = 0.

Note that m1 � m2 � . . . � mk, therefore due to Lemma 1 the problem (41) is the
problem of convex programming.

The problem (41) is a special case of minimization of the weighted sum of
largest eigenvalues of parametric family of matrices (see Section 1).

One can give a more general formulation of the graph partitioning problem
(GPP) by introducing nonnegative weights of edges. As earlier we have a set of
integers m1 � m2 � . . . � mk with

∑k
j=1 mj = n. Denote by m the k-vector made

up of mj -s.
Let G = (V ,E) be a complete graph with |V | = n and each edge (i, j), i < j

has weight wij � 0. We want to part a set of vertices V into k subsets such that the
j -th subset has a prescribed cardinality mj ; and that sum of the weights of those
edges whose endpoints are in different subsets is minimized. Let us denote this
minimum value by πm(G). Let W = {aij } be a matrix with aij = wij , i < j , and
aii = 0, i = 1, . . . , n.

Donath and Hoffman [13] also proved the following inequality

πm(G) � UW
m (G) = −1

2
min
x

k∑
j=1

mjλj (W + diag(x))

subject to constraint

n∑
i=1

xi = −
∑

(i,j)∈E
wij .

We can use subgradient-type methods for calculating the lower bounds for πm(G).
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The first practically efficient algorithm for obtaining the lower bounds for graph
partitioning problems using the minimization of Skn(x,m) (see (41)) was proposed
in [9] by Cullum et al. for equal mi, i = 1, . . . , k. They noticed that problem
(41) is a problem of nondifferentiable optimization and, moreover as a rule, the
optimum point is the point of nondifferentiability of minimized function. Their
method is based on idea of smoothing the function Skn(x,m) by using informa-
tion not only about the k largest eigenvalues and corresponding eigenvectors, but
also the information about other eigenvalues and eigenvectors, if they are slightly
different from k-th eigenvalue.

We used for this purpose one of the modifications of the subgradient-type method
with space dilation in the direction of difference of two successive subgradients (r-
algorithm) and obtained good results in test experiments (see [33]). The technique
for calculation of subgradients is described in the section 1 of this article.

When n is even, k = 2, and m1 = m2 = n
2 , the graph partitioning problem

can be reduced to the so-called graph bisection problem that can be considered as
max-cut problem with one additional constraint.

6. Lagrangian bounds for the maximum cut problem

One of the most bright examples of using quadratic superfluous constraints for
improving dual bounds in quadratic-type problems is connected with the max-cut
problem.

Let G(V,E) be an ordinary graph with the vertex set V = {1, . . . , n} and the
edge set E = {(i, j) = (j, i)}, where (i, j) is the edge, linking vertices (i, j). The
weight function W is given by symmetric n× n matrix

W =
{

0 for (i, j) �∈ E,

wij for (i, j) ∈ E.

Let the vertex set be divided into two nonempty nonintersecting parts V1 and
V2: V = V1

⋃
V2. We say that the edge (i, j) belongs to the cut R(V1, V2) if this

edge have its ends in different subsets of subdivision V = V1
⋃
V2. We must find

such partition V = V1
⋃
V2 that the sum of weights of all edges, belonging to the

corresponding cut, is maximal.
The max-cut problem is NP-complete, it is proved [37] that it preserves this

property even for class of graphs with degrees of vertices not exceeding 3. But
for the subclass of the so-called weakly bipartite graphs the max-cut problem with
positive weights of edges can be solved by polynomial-time algorithm.

Let G = (V ,E) be a graph and F ⊆ E be an edge subset. The vector yF ∈ RE

with yFe = 1 if e ∈ F and yFe = 0 if e �∈ F is called the incidence vector of F . The
polytope PB(G) := conv{yF ∈ RE|(V , F ) is a bipartite subgraph of G} is called
the bipartite subgraph polytope of G. It is clear that for positive edge weights
W(e), e ∈ E, every optimum basic solution of the linear program
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max(W, y), y ∈ PB(G),

corresponds to a cut.
Consider the trivial inequalities:

0 � ye � 1. (42)

The inequalities (42) determine PB(G) completely if and only if G is bipartite.
Consider any odd cycle C in G. It is obvious that full edge set of C cannot belong
to a cut. So, one can formulate for an incidence vector y of a cut the following odd
cut inequalities:

y(C) :=
∑
e∈C

ye � |C| − 1, C is an odd cycle in G. (43)

DEFINITION 1. A graph G(V,E) that has the property: PB(G) = {y ∈ RE|y
satisfies all inequalities (42) and (43) } is called weakly bipartite.

In [20] (see Chapter 9.3) the polynomial time algorithm is given for checking
the feasibility of the vector {yl}l∈E; 0 � yl � 1 for weakly bipartite graphs. This
algorithm gives also the odd cycle for which constraint (43) is not fulfilled, if such
cycle exists.

Thus, one may use the ellipsoid method for finding a maximal cut for weakly
bipartite graph with positive weights (see [20]). But this algorithm is not good for
practical calculations, because it is very complex and converges slowly. Therefore
we consider below quadratic-type formulation of max-cut problem.

Let xk ∈ {−1, 1} be a binary variable corresponding to the vertex k (k ∈
{1, 2, . . . , n}),

xk =
{ −1, if xk ∈ V1,

+1, if xk ∈ V2.

Without loss of generality one can assume that the graph G(V,E) is full. In this
case the value of cut may be represented in terms of binary variables as a quadratic
function:

f (x,W) = 1

8

∑
(i,j),i �=j

wij (xi − xj )
2

= 1

4
(
∑
(i,j)

wij −
∑
(i,j)

wij xixj ).

Since max f (x,W) subject to constraints x2
k − 1 = 0, k = 1, . . . , n, equal to

1/4
∑
(i,j)

wij −min
x

∑
(i,j)

wijxixj subject to the same constraints, the max-cut problem

can be reduced to the quadratic-type problem:
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to find

S(W) = min
x

n∑
i,j=1

wijxixj (44)

subject to constraints

x2
k − 1 = 0, k = 1, . . . , n. (45)

Denote by R∗(W) the optimal value of the max-cut. Due to (44), (45)

R∗(W) = 1

4


∑

(i,j)

wij − S(W)


 . (46)

Let u = {u1, . . . , un} be the vector of Lagrange multipliers corresponding to
equalities (45). Then Lagrange function L(x, u) of reduced problem (44)–(45) has
the form

L(x, u) = (W(u)x, x) −
n∑

k=1

uk,

where

W(u) = W + diag u,

(diag u is a diagonal matrix with the components dii = ui, i = 1, . . . , n). Let
λmin(A) denotes the minimal eigenvalue of matrix A.

The quadratic part of L(x, u) is a homogeneous quadratic in x function, so

inf
x
L(x, u) =

{ −∞, if λmin(W(u)) < 0,

−
n∑

k=1

uk, if W(u) � 0, i.e. λmin(W(u)) � 0.

Consider

ϕ∗ = min
n∑

k=1

uk, W(u) � 0.

By using an exact nonsmooth penalty function (see [7], Chapter 4), the problem
of finding ϕ∗ is reduced to an unconstrained optimization of nondifferentiable
function

f (u, s) =
n∑

k=1

uk + s

[
λ−

min(W(u)

]
, (47)
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where

λ−
min =

{
0, if λmin � 0,
λmin, if λmin � 0,

s is a penalty multiplier. One can prove, that if s � n, the problem of minimization
of f (u, s) is equivalent to the problem (47).

One can solve problem (47) by using r-algorithm. After obtaining an optimal
value of (47) S(W) we can obtain the upper bound for the optimal cut value, using
(46).

The alternative approaches for finding upper bounds of the max-cut problems
are represented in [14, 2, 10]. In articles [1, 22] the bounds similar to ours are
obtained by using another technique. In [16] it is shown how to describe the max-
cut problem in terms of semidefinite programming.

Consider a weighted graph G = (V ,E) with even number of vertices: |V | =
n = 2s. The bisection problem for G can be formulated as follows:

maximize f (y) = 1

4
(
∑

(i,j)∈E
wij −

∑
i,j∈E

wij yiyj ) (48)

subject to constraints:

y2
i − 1 = 0, ∀i ∈ V = {1, . . . , n}, (49)

n∑
i=1

yi = 0 (50)

(for feasible solution y the number of yi having value 1 must be equal to number
yi having value -1). One may propose several ways for obtaining upper bounds for
the problem (48)–(50):

(i) use an estimate of the type (40), (41) with m1 = m2 = s;
(ii) due to (50), yn =∑n−1

i=1 yi . Set ỹ = {y1, . . . , yn−1}.
Consider the problem in variables ỹ which is equivalent to the problem
(48)–(50):

maximize f (ỹ) = 1

4

( ∑
(i,j)∈E

wij −
∑
i,j∈E

[
wijyiyj

−
n−1∑
i=1

win(yiyn + ynyi)

]
(51)

subject to constraints:

y2
i − 1 = 0, ∀i ∈ {1, . . . , n − 1}, (52)
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(
n−1∑
i=1

yi

)2

− 1 = 0. (53)

One can construct Lagrange function for the problem (51)–(53) in the form:

L(ỹ, u) = −f (ỹ)+
n−1∑
i=1

ui(y
2
i − 1)+ un



(
n−1∑
i=1

yi

)2

− 1




and consider a marginal function

ψ(u) = inf
ỹ
L(ỹ, u).

ψ(u) is convex function, and domψ ⊆ 6
+

, where 6 + (6+) = {u ∈ Rn :
L(ỹ, u) is convex (strictly convex) function in ỹ for fixed u}.
Since L(ỹ, u) has no linear in ỹ terms

ψ(u) = −1

4
W +

n∑
i=1

ui, if u ∈ domψ,

where W =∑n
i,j=1 wij .

Let Q(u) be a matrix of the quadratic part of L(x, u). Let ψ∗ = supu∈domψ
ψ(u)

ψ∗ = sup
u∈6+

ψ(u) = {supψ(u) : Q(u) � 0}.

Thus the upper dual bound ϕ∗ for the maximum bisection problem (48)–
(50) can be calculated by solving the following problem:

find ψ∗ = min

[
n∑
i=1

ui + 1

4
w

]
(54)

subject to constraint:

λn[Q(u)] � 0. (55)

The convex programming problem (54), (55) can be solved by application
of r-algorithm for nonsmooth penalty function

ϕp(u) = 1

4
w +

n∑
i=1

ui + sλ+
n [Q(u)],

where

λ+
n (u) =

{
λn(u), if λn(u) < 0;
0, if λn(u) � 0;

s > 0 is a penalty multiplier;
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(iii) the bisection problem (48)–(50) can be approximately reduced by use of
quadratic-type penalty s(

∑
ui)

2 for constraint (50) to usual max-cut prob-
lem with other weights:

wc
ij = wij + s,

where s is a penalty multiplier.
The max-cut problem may be formulated also as the problem of linear program-

ming in edge Boolean variables y = {yij }ni,j=1,i �=j , yij ∈ {0, 1}(yij = 1, if (i, j)
belongs to the cut R(V1, V2), and 0 in the opposite case) (see [3, 4, 19]).

Let M(G) be the convex hull of all feasible solutions of the max-cut problem
in edge variables {yij }. So, one may reformulate the max-cut problem as a linear
programming problem: to find

l∗(G,W) = max
y∈M(G)

∑
(i,j)

wij yij .

Edge variables yij and vertex binary variables are linked by simple formula:

yij = 1 − xixj

2
for all yij , i �= j. (56)

In a large graph the set M(G) has tremendous number of faces. But for special
graphs all its faces can be described in compact form. For example, if graph is
planar, for each triangle {i, j, k}, one may write down the inequality

yij + yjk + yik � 2. (57)

Barahona and co-workers [3, 4] generalized the algorithm for planar graphs on
the family of graphs not contractible to graph K5 (5-clique).

Denote by y(N) the sum
∑

(i,j)∈N
yij , where N is a set of edges. Using this

notation we can record more general family of inequalities of the following form:

y(F ) − y(C \ F) � |F | − 1 for all circuits C of G

and subsets F ⊆ C with |F | odd. (58)

These inequalities are valid for M(G).
Barahona and co-workers [3, 4] have shown that the solution set of (58) is equal

to M(G) if and only if G has no subgraphs contractible to K5 (K5 is 5-clique).
There is a simple algorithm (see [20], §8.3, pp. 235–236) for verifying validation
of system (58) for given y (0 � yij � 1 for all (i, j)).

We construct a new graph H = (V ′⋃V ′′, E′⋃E′′⋃E′′′), consisting of dis-
joint copies G′(V ′, E′) and G′′(V ′′, E′′) of G and an additional edge set E′′′ that
contains the edges u′v′′, u′′v′ for each uv ∈ E . The edges u′v′ ∈ E′ and u′′v′′ ∈ E′′
get the weight yuv′ while the edges u′v′′ and u′′v′ ∈ E′′′ get the weight 1 − yuv .



LAGRANGIAN BOUNDS IN MULTIEXTREMAL POLYNOMIAL AND ..................... 33

For each node u ∈ V we calculate a shortest path (with respect to weights just
defined). Such a path contains an odd number of edges of E′′′ and corresponds to
a closed walk in G, containing u. Clearly, if the shortest of these [u′, u′′]-paths has
the length equal to at least one, then y satisfies (58), otherwise there exists a cycle
C and a set F ⊆ C, |F | odd, such that y violates the corresponding inequality.
Such linear in y inequalities can be converted by substitution (56) in quadratic
inequalities in binary variables x which may be added to the set of obtained earlier
inequalities in x as superfluous constraints. So we described one of the possible
ways to generate the superfluous inequalities for model (44). Further adding of
superfluous constraints as a rule essentially improves dual quadratic upper bounds
for the max-cut problem. In combination with heuristic methods of constructing
feasible cuts such approach allows to obtain an exact solution for graphs with
integer weight matrix which subgraphs are not contractible to K5 ([3, 20]). A more
detailed description of corresponding algorithm one can find in [33], §8.1.

Thus, in the case of weakly bipartite graphs the max-cut problem with positive
weights of edges reduces to LP problem but the number of inequalities of the type
(42) may increase as exponential function of the size of a graph. To overcome
this difficulty for obtaining a polynomial time algorithm of solving the max-cut
problem in the mentioned above case one can use the ellipsoid method. Certain
steps of this method need to solve the problem of finding the odd cycle of minimum
weight for checking the feasibility of the inequalities (42). The search of such
a cycle can be reduced to at most n applications of the algorithm of finding the
shortest even path in a weighted graph (see [20], Chapter 8.4).

The quadratic dual bound for the max-cut problem in the case of weakly bi-
partite graphs is not always exact, but if all weights are nonnegative, the following
estimate is proven.

THEOREM 4. Let G be a weakly bipartite graph with non-negative weights. Then

ϕ(G) � 5
√

5(1 + √
5)

32
mc(G).

In [18, 15] there was proposed a way of generating ‘good’ feasible solutions
for the max-cut problem using the eigenvectors associated with λn(W + diag(u))

where u is an approximation of u∗. Let s(u) = {si(u)}ni=1 be an eigenvector asso-
ciated with λn(W + diag(u)). Write its entries in a nonincreasing order:

si1(u) � si2(u) � . . . � sin(u).

For different k, 1 � k � n, construct the partition of V :

V = S(k) ∪ (V \S(k)),
where S(k) = {i1, . . . , ik}, and find maxk c(S(k)) = c(S(k)), where c(S(k)) is the
value of cut corresponding to two subdivision: S(k) and V \S(k). Choose a feasible
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vector y(s(u)) corresponding to this partition:

y(s(u)) =
{

1, for i ∈ S(k),

−1, for i ∈ V \S(k).
In many cases y(s(u)) is a good approximation of the optimal solution. So, in the
process of minimization of SN(u) by r-algorithm one may use u(k) at each step k

not only for obtaining an upper bound for f (y∗) = mc(G), but also for obtaining
a feasible integral solution y(u(k)) in the described above way. One can use the
record value of the objective function for generated feasible solutions as lower
bound for mc(G). The results of numerical experiments are presented in [34].

7. The computational results

(1) We describe the results of test calculations for finding global minimum value of
some multiextremal polynomial functions of one variable. For beginning, consider
the family of 6-th degree polynomials of the form:

P6(x) = x6 − 2tx4 + (t2 − ε)x2 = x2((x2 − t)2 − ε), (59)

where t and ε are parameters of this family.
It is easy to see that if t > 0, ε > 0, t2 − ε > 0, polynomials (59) have two

global minima:

x∗
1 =

√
2t

3
+

√
t2 + 3ε

3
; x∗

2 = −
√

2t

3
+

√
t2 + 3ε

3
.

If ε = 0, polynomials (59) has three global minima: x∗
1 , x∗

2 and 0.
The results are given in Table 1. Here x∗

2 is an approximation of optimal dual
bounds obtained for the quadratic-type problems (8)–(11), which correspond to
the global minimum of polynomial P6(x); P ∗ is an exact value of global minimum
of polynomial P6(x); u∗

1, u∗
2, u∗

3 are obtained values of Lagrange multipliers for
constraints (9)–(11).

Table 1 shows that in all test experiments ψ∗
2 is equal to global minimums of

polynomial P6(x) with good precision. Optimal values of dual variables u∗
1, u∗

2, u∗
3

lie at the border of positive definite region of matrix

K(u) = K(u1, u2, u3) =

 u1 u2/2 −u3/2

u2/2 u3 − 2t 0
−u3/2 0 1


 .

Taking into account that u∗
2 = 0,

K(u∗
1, 0, u∗

3) =

 u∗

1 0 −u∗
3/2

0 u∗
3 − 2t 0

−u∗
3/2 0 1



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Table 1. Results of experiments for P6(x)

t ε ψ∗
2 P ∗ u∗

1 u∗
2 u∗

3

1.00 1.0000 -1.185185 -1.185185 1.7778 0.0000 2.6667

1.00 0.1000 -0.102387 -0.102387 1.0956 0.0000 2.0935

1.00 0.0100 -0.010025 -0.010025 1.0100 0.0000 2.0099

1.00 0.0010 -0.001000 -0.001000 1.0010 0.0000 2.0010

1.00 0.0001 -0.000100 -0.000100 1.0001 0.0000 2.0001

1.00 0.0000 0.000000 0.000000 1.0000 0.0000 2.0000

0.50 1.0000 -0.758076 -0.758076 0.8728 0.0000 1.8685

0.50 0.1000 -0.054288 -0.054288 0.3370 0.0000 1.1611

0.50 0.0100 -0.005049 -0.005049 0.2598 0.0000 1.0194

0.50 0.0010 -0.000500 -0.000500 0.2510 0.0000 1.0020

0.50 0.0001 -0.000050 -0.000050 0.2501 0.0000 1.0002

0.50 0.0000 0.000000 0.000000 0.2500 0.0000 1.0000

0.25 1.0000 -0.562500 -0.562500 0.5625 0.0000 1.5000

0.25 0.1000 -0.031676 -0.031676 0.1350 0.0000 0.7347

0.25 0.0100 -0.002593 -0.002593 0.0718 0.0000 0.5361

0.25 0.0010 -0.000251 -0.000251 0.0635 0.0000 0.5040

0.25 0.0001 -0.000025 -0.000025 0.0626 0.0000 0.5004

0.25 0.0000 0.000000 0.000000 0.0625 0.0000 0.5000

the eigenvalues of K(u∗
1, 0, u∗

3) will be following

λ1 = u∗
3 − 2t; λ2,3 = (u∗

1 + 1) ±√(u∗
1 − 1)2 + (u∗

3)
2

2
.

For ε > 0 the polynomials P6(x) have two global minima and eigenvalues of
matrices K(u∗

1, 0, u∗
3) satisfy the condition λ1 > 0, λ2 > 0 and λ3 = 0. If ε = 0,

P6(x) has three global minima, and λ2 > 0, λ1 = λ3 = 0.
Described results show that the method is stable also in the case, when solution

is at the border of the set of positive definiteness of matrix K(u).
Some examples of finding Lagrangian bounds were solved for polynomials of

degree greater than 6. For polynomial of eighth degree

P8(x) = x8 − 76/3x6 + 222x4 − 756x2,

which has two global minimum points: x∗
1 = √

3 and x∗
2 = −√

3, P8(x
∗
1 ) =

P8(x
∗
2 ) = −873, the following results were obtained: the precision 10−6 was

reached in 66 iterations of r-algorithms; the precision 10−10 was reached in 98
iterations. For the polynomial

P8(x) = x8 − 8x7 + 112x5 − 158x4 − 392x3 + 840x2
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Table 2. Results for polynomials Chebyshev and Legandre polyno-
mials

Chebyshev polynomials Legandre polynomials

2m iter nf ψ∗
r − P ∗ iter nf ψ∗

r − T ∗

4 21 31 0.47684E-06 21 31 0.44740E-06

6 35 71 0.17072E-04 47 95 0.72306E-08

8 70 129 0.52532E-04 95 189 0.11723E-09

10 124 268 0.83521E-04 144 257 0.15465E-10

12 183 377 0.83487E-03 432 793 0.43077E-13

14 234 458 0.88431E-03 505 921 0.34885E-12

having one global minimum point: x∗
1 = 5, P8(x

∗
1 ) = −11125, the following

results were obtained: for precision 10−11 the 105 iterations were needed. Some
experiments for Legandre and Chebyshev polynomials were made. The Legandre
polynomials were generated by recurrent formula:

Pn+1(x) = 2n + 1

n + 1
xPn(x) − n

n + 1
Pn−1(x), P0(x) = 1, P1(x) = x

the Chebyshev polynomials were generated by formula:

Tn+1(x) = 2xTn(x) − Tn−1(x), T0(x) = 1, T1(x) = x.

The results are given for even degrees 2m = 4, 6, 8, 10, 12 and 14 in Table
2. Here iter – the number of iterations and nf – the number of calculations of
function and subgradients in r-algorithm procedure, necessary for obtaining the
defined precision εx = 1.E − 6. In columns 4 and 7 the deviations of Lagrangian
bounds from global minimums are given.

(2) For the max-cut problem some numerical experiments were accomplished.
For planar graph in the form of icosahedron (12 vertices and 30 edges) we use
the edge weights from Table 3. At first we obtain dual quadratic upper bound
668. Further by heuristic algorithm [18] which use optimal dual variables we ob-
tain a feasible solution with cut value 642 (V1 = {1, 2, 9, 10, 11, 12}; (V2 =
{3, 4, 5, 6, 7, 8}). For obtaining optimal cut we generate successively the triangle
constraints (57). In Table 4 the vertices of triangle cycles are represented. After
adding ten superfluous constraints in the form of triangles constraints, which were
converted by substitution (56) in quadratic inequalities, we found the upper bound
ϕ∗ such that ϕ∗ − 642 < 1. Thus, the found feasible solution gives the optimal cut.
Note, that our result corresponds to Theorem 4:

(668 − 642)/642 = 26/642 = 23/321 ≈ 0.0405 ≈ 4%.
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Table 3. Edge weights for ‘icosahedron’

No. i j wij No. i j wij No. i j wij

edge edge edge

1 1 2 20.0 11 3 9 18.0 21 7 8 18.0

2 1 3 30.0 12 3 10 15.0 22 7 9 27.0

3 1 4 40.0 13 4 5 32.0 23 7 10 36.0

4 1 5 50.0 14 4 10 24.0 24 7 11 45.0

5 1 6 60.0 15 4 11 20.0 25 7 12 54.0

6 2 3 16.0 16 5 6 40.0 26 8 9 14.0

7 2 6 48.0 17 5 11 30.0 27 8 12 42.0

8 2 8 12.0 18 5 12 25.0 28 9 10 21.0

9 2 9 10.0 19 6 8 30.0 29 10 11 28.0

10 3 4 24.0 20 6 12 36.0 30 11 12 35.0

Table 4. Adding of triangle cycles for ‘icosahedron’

No. i, j, k ϕ∗ No. i, j, k ϕ∗
cycle cycle

1 6,8,12 665.53 6 5,6,12 647.06

2 1,5,6 661.94 7 2,6,8 646.72

3 1,4,5 657.13 8 5,11,12 646.41

4 7,11,12 652.82 9 7,8,12 645.14

5 7,9,10 650.66 10 7,10,11 642.90

(3) Optimal bisection of graphs (BiSection). BiSection problem for graph
G(V,E) is formulated for even |V | and corresponds to MaxCut problem under
condition: the number of vertices in subsets V1 and V2 are equal. We obtain the
quadratic-type problem (44)–(45), with a new constraint

n∑
i=1

xi = 0, (60)

or its quadratic analogue:(
n∑
i=1

xi

)2

= 0. (61)

One may find the upper Lagrangian for BiSection in different ways: (a) using
(60) for excluding xn; (b) using Lagrange multiplier un+1 for account (61); (c) using
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Table 5. Edge weights for Petersen graph

wij

(i, j) P1 P2 P3 P4 P5 P6 P7 P8 P9

(1,2) 1 5 2 5 1 5 2 5 1

(1,5) 1 1 3 6 8 2 7 2 3

(1,10) 1 3 4 3 1 2 2 2 3

(2,3) 1 2 7 2 3 1 3 6 8

(2,9) 1 2 6 2 5 5 1 5 9

(3,4) 1 3 1 6 7 3 4 3 1

(3,8) 1 4 3 4 2 1 2 1 2

(4,5) 1 1 2 1 2 2 6 2 5

(4,7) 1 1 5 1 3 4 3 4 2

(5,6) 1 5 1 5 9 3 1 6 7

(6,8) 1 5 5 5 4 1 5 1 3

(6,9) 1 3 1 3 1 5 5 5 4

(7,9) 1 2 2 2 3 3 1 3 1

(7,10) 1 1 2 1 8 1 2 1 8

(8,10) 1 1 1 1 1 1 1 1 1

penalty nonsmooth function with parameter s, where s >
∑

(i,j)∈E
|wij |. Algorithm

for solving ‘BiSection’ by scheme (c) is similar to scheme of finding dual bounds
for max-cut (see Section 6). The difference is that instead of matrix W(u) we use
the matrix W̃ (u) = sJn +W(u), where Jn is the n×n matrix with all entries equal
to 1.

The results of experiments are given in Table 6. For test problems we use the
Petersen graph (10 vertices and 15 edges) with enumeration of vertices as in [34].
The values of edge weights for nine examples P1, . . . , P9 are given in Table 5.

We use the following parameters of r-algorithm: α = 2, h0 = 1.0, q1 = 0.9,
nh = 3, q2 = 1.1. For the starting point we use u0 = {1, 1, 1, 1, 1, 0, 0, 0, 0, 0}. r-
algorithm stops if at the k-th iteration ‖uk − uk−1‖ � εu = 10−3 or ϕup − ϕlo < 1.
Here ϕup is an upper bound obtained at the current step, ϕlo is the value of cut
obtained by heuristic procedure of finding ‘good’ feasible cut (see Section 6). This
cut is shown in Table 6 by representation V1 ∪ V2.

From Table 6 we see, that for 5 examples we obtain exact values of the problems
after rounding of bounds, and the number of iterations was relatively small.
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Table 6. BiSection for Petersen graph

T est iter ϕup ϕlo V1 V2

P1 41 12.50045 11.0 1,2,5,7,8 3,4,6,9,10

P2 7 34.91024 34.0 2,3,6,7,10 1,4,5,8,9

P3 2 40.84215 40.0 2,5,7,8,10 1,3,4,6,9

P4 44 41.63351 40.0 1,3,6,7,10 2,4,5,8,9

P5 35 52.52589 51.0 1,2,4,6,7 3,5,8,9,10

P6 32 34.14082 33.0 1,4,5,8,9 2,3,6,7,10

P7 17 39.99753 39.0 1,2,4,8,9 3,5,6,7,10

P8 11 40.99564 40.0 2,4,6,8,10 1,3,5,7,9

P9 7 52.92904 52.0 1,2,4,6,7 3,5,8,9,10

Conclusion

As we have shown in this article the finding of Lagrangian bounds in polyno-
mial multiextremal and Boolean extremal models can be reduced in many cases
to the problems of nondifferentiable optimization with specific constraints in the
form of semidefinitness of some parametric families of symmetric matrices. These
problems can be formulated also in the form of semidefinite programming (SDP)
(see [29] ) and solved by corresponding algorithms (for example, by interior point
method [12]).

Since 1970, we solved many hundreds of sophisticated tests and applied prob-
lems using r-algorithms . The results of Nemirovsky–Yudin on information com-
plexity of convex programming algorithms [28] show that in general case one must
make O(n log 1

ε
) measurements of function and subgradients in current points to

guarantee the relative accuracy ε on minimized function value and discrepancy in
constraints.

The results of testing of r-algorithms show that if the errors of rounding are not
essential, the objective function values as a rule may be majored by a geometrical
progression of the form Cq

k
n , where k is the number of current step and q = 1

2 . So,
as a rule the convergence of r-algorithm is approximately 2n times faster than of
well known ellipsoid methods.

Our numerical experiments showed that application of nondifferentiable optim-
ization models for obtaining Lagrangian bounds for multiextremal and combinat-
orial problems have some advantages in comparison with SDP methods: (a) the
possibility to take in account specific structure of the problem and the use of de-
composition schemes, if the problem has quasi-block structure; (b) simple ways for
exchanging models in the case of adding new quadratic constraints; (c) possibility
to use exact nonsmooth penalty functions; (d) rather fast rate of convergence and
simplicity of r-algorithms.
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In [8] the long history of finding good algorithms for solving some extremal
mechanical problems posed by Lagrange in 1773 is described. Now these problems
were reduced to nonsmooth optimization problems of maximization of the least
eigenvalue of a self-adjoint fourth-order differential operator.

Only after more than 200 years good algorithms for solving such problems have
been found and implemented. New algorithms were built on the base of last devel-
opments of convex analysis and study of the differential properties of nonsmooth
functions, particularly, of extremal eigenvalues of differential operators. Note, that
similar problems arise when we want to find Lagrangian bounds for a combinatorial
problem. As we have shown, the r-algorithms solve such problems successfully.

We want to emphasize that methods of nondifferentiable optimization must be-
come necessary part of the courses of applied mathematics for mathematical and
technical education.
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